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§1 Orders

Before we begin, what are orders?

Definition 1.1. For relatively prime integers a and m, the order of an integer a mod m is the smallest
positive integer x such that

ax ≡ 1 mod m

This is denoted as x = ordma

Most times, we use orders with m replaced with a prime p, but it is still important to know its general
form.

Let’s take a look at a quick example, to familiarize ourselves with orders.

Problem 1.2 — What is the order of 3 mod 11?

Solution. We make a table comparing x and 3x mod 11.

x 1 2 3 4 5
3x mod 11 3 9 5 4 1

So we see that 5 is the smallest value of x such that 3x ≡ 1 mod 11, meaning ord113 = 5

§2 Main Theorem of Orders

This theorem is at the heart of most problems involving orders.

Theorem 2.1

For relatively prime integers a and m and integer n, an ≡ 1 mod m if and only if ordma | n

Proof. First, if ordma|n, then we let n = kordma for some positive integer k. Then, we have as follows.

aordma ≡ 1 mod m

(aordma)k ≡ 1k mod m

akordma ≡ 1 mod m

an ≡ 1 mod m

Now, we prove the other direction, which assumes an ≡ 1 mod m.

Let n = k · ordma+ r where r is the remainder after dividing n by ordma. We want to prove r = 0.
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an ≡ 1 mod m

akordma+r ≡ 1 mod m

(aordma)k ∗ ar ≡ 1 mod m

1 ∗ ar ≡ 1 mod m

ar ≡ 1 mod m

If r is positive, this contradicts the fact that x = ordma is the smallest positive integer x such that
ax ≡ 1 mod m. So, r must be 0, and we are done.

Although the above is our main theorem, the really commonly used corollary is stated below. To be
even more specific, the form replacing m with a prime p is most relevant.

Corollary 2.2

For relatively prime integers a and m, ordma | φ(m).

Proof. By Fermat’s Little Theorem, we have

aφ(m) ≡ 1 mod m

So, replacing n with φ(m) in the above theorem completes the corollary.

§3 Examples

As with the rest of contest math, the best way to learn is to do some examples. Let’s look at a few.

Problem 3.1 (2019 AIME I #14) — Find the least odd prime factor of 20198 + 1

Solution. Let 20198 ≡ −1 mod p for some odd prime p. We want to find the smallest possible value of
p.

Squaring both sides give 201916 ≡ 1 mod p, so ordp2019 | 16.

But, by given, 20198 ≡ −1 mod p and p 6= 2, so ordp2019 6= 8. This must mean ordp2019 = 16.

By Theorem 2.1, we have that ordp2019 = 16 | φ(p) = p− 1, so p ≡ 1 mod 16.

We first test p = 17, as it is the smallest prime such that p ≡ 1 mod 16.

20198 + 1 ≡ 138 + 1 ≡ 1694 + 1 ≡ (−1)4 + 1 ≡ 2 mod 17

So 17 is not a factor.

We now test the next biggest prime p such that p ≡ 1 mod 16, which is 97.

20198 + 1 ≡ (−18)8 + 1 ≡ 334 + 1 ≡ 222 + 1 ≡ 485 ≡ 0 mod 97

So 97 is a factor, and we have verified that it is the smallest.

Problem 3.2 (Classic) — Prove for all integers n ≥ 2 that n does not divide 2n − 1.

Solution. Let p be the smallest prime factor of n, which must exist because n ≥ 2. For the sake of
contradiction, assume n | 2n − 1.

We know that p | 2n−1, so 2n ≡ 1 mod p. By Theorem 2.1, we have ordp2 | n and ordp2 | φ(p) = p−1.
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The first statement implies that ordp2 is a factor of n. The second statement implies ordp2 ≤ p− 1.
This is a contradiction, because we assumed that p was the smallest prime factor of n. So, we are
done.

Problem 3.3 (Bulgaria 1996/4/1) — Find all pairs of primes p, q such that pq | (5p − 2p)(5q − 2q)

Solution. We can divide this problem into cases. Either p | 5p−2p is true, or it isn’t (implying p | 5q−2q.
Similarly, we have that either q | 5q − 2q is true, or it isn’t (implying q | 5p − 2p). This gives us 4 cases.

We assume both statements are true.
p | (5p − 2p)

5p − 2p ≡ 0 mod p

5− 2 ≡ 0 mod p

3 ≡ 0 mod p

So we determine that p = 3. Using the same logic, we have q = 3, giving us the pair (3, 3).

Now assume the first statement about p is still true, but the statement about q is false. From our
earlier work, we still have p = 3. Now, since the statement about q is false, we have as follows.

q | 5p − 2p

5p − 2p ≡ 0 mod q

53 − 23 ≡ 0 mod q

117 ≡ 0 mod q

So, the possibilities of q are 3 and 13, producing a new distinct pair (3, 13).

Now, we assume the first statement isn’t true, giving us p | 5q − 2q. Assuming q | 5q − 2q gives us
(13, 3) by symmetry on the last case, so we now assume q | 5p − 2p.

p | 5q − 2q

5q ≡ 2q mod p

(5 · 2−1)q ≡ 1 mod p

ordp(5 · 2−1 | q)

Sinc q is a prime, there are only two possibilities for ordp(5 · 2−1: 1 and q.

Assume that ordp(5 · 2−1 = 1. Then, we must have as follows.

(5 · 2−1)1 ≡ 1 mod p

5 ≡ 2 mod p

The above statement is only true for p = 3, which we have already covered. So now, we have
ordp(5 · 2−1) = q.

We also know by Corollary 2.2 that ordp(5 · 2−1) | φ(p) = p− 1, so q | p− 1, which means q < p.

Using a similar argument switching p and q, we get p < q. But this contradicts our previous result,
q ≤ p, so there are no pairs in this case.

So, our only pairs are (3, 3), (3, 13), (13, 3)
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§4 Primitive Roots

We will very briefly discuss primitive roots.

Definition 4.1. Let g,m be positive integers. We say that g is a primitive root mod m if ordmg =
φ(m).

Theorem 4.2

There exists a primitive root mod m if and only if m = 1, 2, 4, pk or 2pk for some positive integer
k.

We will not prove this theorem. The useful part of primitive roots is that there must exist a primitive
root mod p for a prime p.

Let’s investigate another quick example, for the sake of familiarization.

Problem 4.3 — Find the primitive roots mod 5.

Solution. We find the order of 1, 2, 3, and 4 mod 5. We disclude 0 because it is not relatively prime
to 5.

• The powers of 1 are 1, ... so the order is 1.

• The powers of 2 are 2, 4, 3, 1, ... so the order is 4.

• The powers of 3 are 3, 4, 2, 1, ... so the order is 4.

• The powers of 4 are 4, 1, ... so the order is 2.

So, the primitive roots are the terms with order φ(5) = 4, which are 2 and 3

Let’s finish with a cute example.

Problem 4.4 — Prove that if p is a prime such that p ≡ 1 mod 4, then there exists a positive
integer a such that a2 ≡ −1 mod p.

Solution. The statement a2 ≡ −1 mod p implies that a4 ≡ 1 mod p. We recall our definition of

primitive roots, which is gp−1 ≡ 1 mod p, and are motivated to plug in a = g
p−1
4 . We can only plug

this in because p−1
4 is an integer.

Clearly, a4 ≡ (g
p−1
4 )4 ≡ gp−1 ≡ 1 mod p, so we verified that ordp(g

p−1
4 ) | 4. We now need to verify

that a2 6≡ 1 mod p.

a2 ≡ (g
p−1
4 )2 ≡ g

p−1
2 6≡ 1 mod p

If the above were congruent to 1 mod p, then we would have a contradiction because by definition of
primitive roots, ordpg = p− 1, not p−1

2 . So, we have verified that a2 6≡ 1 mod p, which implies a2 ≡ −1
mod p.
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