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§1 Orders

Before we begin, what are orders?

Definition 1.1. For relatively prime integers a and m, the order of an integer a mod m is the smallest
positive integer x such that
a®*=1 modm

This is denoted as = = ord,,a

Most times, we use orders with m replaced with a prime p, but it is still important to know its general
form.

Let’s take a look at a quick example, to familiarize ourselves with orders.

Problem 1.2 — What is the order of 3 mod 117

Solution. We make a table comparing z and 3* mod 11.

z 112131415
3 modl11 |39 |5 (4|1

So we see that 5 is the smallest value of x such that 3* =1 mod 11, meaning ord13 =

§2 Main Theorem of Orders

This theorem is at the heart of most problems involving orders.

Theorem 2.1

For relatively prime integers a and m and integer n, a” =1 mod m if and only if ord,,a | n

Proof. First, if ord,,a|n, then we let n = kord,,a for some positive integer k. Then, we have as follows.
a®4m® =1 mod m
(a®™dm)* = 1% mod m
akordme =1 mod m
a”=1 modm

Now, we prove the other direction, which assumes ¢ =1 mod m.

Let n = k - ord,,a + r where 7 is the remainder after dividing n by ord,,a. We want to prove r = 0.
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a"=1 modm
akordmatT =1 mod m

(a®™4m)* w a" =1 mod m
l¥a"=1 modm
a =1 modm

If r is positive, this contradicts the fact that x = ord,,a is the smallest positive integer x such that
a® =1 mod m. So, r must be 0, and we are done. ]

Although the above is our main theorem, the really commonly used corollary is stated below. To be
even more specific, the form replacing m with a prime p is most relevant.

Corollary 2.2

For relatively prime integers a and m, ord,a | ¢(m).

Proof. By Fermat’s Little Theorem, we have
a®™ =1 modm

So, replacing n with ¢(m) in the above theorem completes the corollary. O

§3 Examples

As with the rest of contest math, the best way to learn is to do some examples. Let’s look at a few.

Problem 3.1 (2019 AIME | #14) — Find the least odd prime factor of 20198 + 1

Solution. Let 2019% = —1 mod p for some odd prime p. We want to find the smallest possible value of
P.

Squaring both sides give 2019'6 =1 mod p, so ord,2019 | 16.
But, by given, 2019% = —1 mod p and p # 2, so ord,2019 # 8. This must mean ord,2019 = 16.
By Theorem 2.1, we have that ord,2019 =16 | ¢(p) =p—1, so p=1 mod 16.

We first test p = 17, as it is the smallest prime such that p =1 mod 16.
20198 4+1=13%+1=169"+1=(-1)"+1=2 mod 17
So 17 is not a factor.
We now test the next biggest prime p such that p =1 mod 16, which is 97.
2019° +1=(-18)*+1=33"+1=222+1=485=0 mod 97

So is a factor, and we have verified that it is the smallest. O

| Problem 3.2 (Classic) — Prove for all integers n > 2 that n does not divide 2™ — 1.

Solution. Let p be the smallest prime factor of n, which must exist because n > 2. For the sake of
contradiction, assume n | 2" — 1.

We know that p | 2" —1, 502" =1 mod p. By Theorem 2.1, we have ord,2 | n and ord,2 | ¢(p) = p—1.
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The first statement implies that ord,2 is a factor of n. The second statement implies ord,2 < p — 1.
This is a contradiction, because we assumed that p was the smallest prime factor of n. So, we are

done. O

Problem 3.3 (Bulgaria 1996/4/1) — Find all pairs of primes p, ¢ such that pq | (57 — 2P)(57 — 29)

Solution. We can divide this problem into cases. Either p | 57 — 2P is true, or it isn’t (implying p | 59 — 2.
Similarly, we have that either ¢ | 57 — 29 is true, or it isn’t (implying ¢ | 5” — 2P). This gives us 4 cases.

We assume both statements are true.
p| (57 —2°)
5 —2P =0 mod p
5—2=0 modp
3=0 modp
So we determine that p = 3. Using the same logic, we have ¢ = 3, giving us the pair (3, 3).

Now assume the first statement about p is still true, but the statement about ¢ is false. From our
earlier work, we still have p = 3. Now, since the statement about ¢ is false, we have as follows.

AT
5 — 2P =0 mod ¢
53 —-23=0 mod q
117=0 mod ¢
So, the possibilities of g are 3 and 13, producing a new distinct pair (3,13).

Now, we assume the first statement isn’t true, giving us p | 57 — 29. Assuming ¢ | 59 — 27 gives us
(13,3) by symmetry on the last case, so we now assume ¢ | 5 — 2P.

p|5"—2
59=27 mod p
(5-27H9=1 mod p
ord,(5-271 | q)

Sinc ¢ is a prime, there are only two possibilities for ord,(5 - 271 1 and q.
Assume that ord,(5 - 271 = 1. Then, we must have as follows.
(5-27H'=1 mod p

5=2 modp

The above statement is only true for p = 3, which we have already covered. So now, we have
ord,(5-271) =¢q.

We also know by Corollary 2.2 that ord,(5-271) | ¢(p) =p —1, so ¢ | p— 1, which means ¢ < p.

Using a similar argument switching p and ¢, we get p < ¢q. But this contradicts our previous result,
q < p, so there are no pairs in this case.

So, our only pairs are ‘ (3,3),(3,13),(13,3) ‘ O
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84 Primitive Roots

We will very briefly discuss primitive roots.

Definition 4.1. Let g, m be positive integers. We say that ¢ is a primitive root mod m if ord,,g =

¢(m).

Theorem 4.2

There exists a primitive root mod m if and only if m = 1,2,4, p* or 2p* for some positive integer
k.

We will not prove this theorem. The useful part of primitive roots is that there must exist a primitive
root mod p for a prime p.

Let’s investigate another quick example, for the sake of familiarization.

Problem 4.3 — Find the primitive roots mod 5.

Solution. We find the order of 1, 2, 3, and 4 mod 5. We disclude 0 because it is not relatively prime
to o.

e The powers of 1 are 1, ... so the order is 1.
e The powers of 2 are 2, 4, 3, 1, ... so the order is 4.
e The powers of 3 are 3, 4, 2, 1, ... so the order is 4.
e The powers of 4 are 4, 1, ... so the order is 2.
So, the primitive roots are the terms with order ¢(5) = 4, which are ]

Let’s finish with a cute example.

Problem 4.4 — Prove that if p is a prime such that p =1 mod 4, then there exists a positive
integer a such that a®> = —1 mod p.

Solution. The statement a®> = —1 mod p implies that a* = 1 mod p. We recall our definition of
-1

primitive roots, which is ¢! =1 mod p, and are motivated to plug in a = ng. We can only plug

this in because % is an integer.

Clearly, a* = (gp%l)4 =g’ =1 mod p, so we verified that ordp(gp%l) | 4. We now need to verify
that a®> # 1 mod p.

—1 —1
a’ = (ng)2 Eng Z1 mod p

If the above were congruent to 1 mod p, then we would have a contradiction because by definition of

primitive roots, ord,g = p — 1, not %. So, we have verified that a? # 1 mod p, which implies a® = —1

mod p. O
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